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Abstract

For the two-phase Hele-Shaw and Muskat problems, and also for irrotational incom-
pressible Euler equation in vacuum, we prove existence locally in time when the Rayleigh-
Taylor condition is initially satisfied for a 2D interface. The result for water waves was
first obtained by Wu [27] in a slightly different scenario (vanishing at infinity), but our
approach is different: it emphasizes the active scalar character of the system and does
not require the presence of gravity.

1 Introduction

There are several interesting problems in Fluid Mechanics regarding the evolution of the
interface between two fluids (the Hele-Shaw cell [17, 22] and the Muskat problem [20]) or
between a fluid and vacuum or another fluid with zero density, such as it happens in the
modelization of water waves. In all of them the first important question to be asked is theirs
well-possedness, usually within the chain of Sobolev spaces. However such a result turns out
to be false for general initial data, but first Rayleigh [21], Taylor [26] and Saffman-Taylor
[22], and later Beale-Hou-Lowengrub [4], Wu [27, 28], Christodoulou-Lindblad [7], Ambrose
[1], Lindblad [19], Ambrose-Masmoudi [2], Coutand-Shkoller [12], Córdoba-Gancedo [11],
Shatah-Zeng [23] and Zhang-Zhang [29] figure out a condition that must be satisfied in order
to have a solution locally in time: the different of gradient of pressure of both fluids must be
projected with an appropriated sign at the normal vector to the interface. This is known as
the Rayleigh-Taylor condition.

In references [9] and [10] we have obtained well-possedness in the 2D case: for the Hele-
Shaw and Muskat problems, our result is new in the more difficult case when the two fluids
have different densities and viscosities, but for water waves we give a different proof of the
important theorem of Wu [27] where gravity plays a crucial role in the sign of the Rayleigh-
Taylor condition. In our proof we consider the two cases, with or without gravity, and with
initial data also satisfying Rayleigh-Taylor condition.

In some cases for which the Rayleigh-Taylor condition is not satisfied initially there are
several proofs of ill-possedness. We point out the works of Ebin [14, 15], Caflisch-Orellana
[5], Siegel-Caflisch-Howison [24] and Córdoba-Gancedo [11].
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We regard these models as transport equations for the density, considered as an active
scalar, with a divergence free velocity field given by Darcy’s law (Hele-Shaw and Muskat)
or Bernoulli law (irrotational incompressible Euler equation). It follows that the vorticity is
given as a delta distribution in the interface multiplied by an amplitude. The dynamic of the
interface follows from the Birkhoff-Rott integral of that amplitude to which we may subtract
any component in the tangential direction without modifying the interface evolution (see
[18]). We treat the case without surface tension which leads to the equality of the pressure
on the free boundary. In both problems it is assumed that the initial interface does not touch
itself, and we quantify that property imposing that the arch-chord quotient be initially strictly
positive. It is part of the evolution problem to check carefully that such a positiveness prevails
for a short time (see [16]), as well as the Rayleigh-Taylor condition, depending conveniently
upon the initial data.

2 Equations

The free boundary is given by the discontinuity on the densities and the viscosities (in the
case of free boundary for the irrotational incompressible Euler equation the viscosity is zero)
of the fluids

(µ, ρ)(x1, x2, t) =
{

(µ1, ρ1), x ∈ Ω1(t)
(µ2, ρ2), x ∈ Ω2(t) = R2 − Ω1(t),

(1)

and µ1 6= µ2, and ρ1 6= ρ2 are constants.
Let the free boundary be parameterized by

∂Ωj(t) = {z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R}

such that
(z1(α + 2kπ, t), z2(α + 2kπ, t)) = (z1(α, t) + 2kπ, z2(α, t)), (2)

with the initial data z(α, 0) = z0(α). Also we shall study the case of a closed curve:

(z1(α + 2kπ, t), z2(α + 2kπ, t)) = (z1(α, t), z2(α, t)). (3)

We consider that each fluid is irrotational, i.e. ω = ∇ × u = 0, in the interior of each
domain Ωi (i = 1, 2). Therefore the vorticity ω has its support on the curve z(α, t) and it
has the form

ω(x, t) = $(α, t)δ(x− z(α, t)).

Then z(α, t) evolves with a velocity field coming from Biot-Savart law, which can be
explicitly computed and it is given by the Birkhoff-Rott integral of the amplitude $ along
the interface curve:

BR(z, $)(α, t) =
1
4π

PV

∫
(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2 $(β, t)dβ, (4)

for PV principal value (see [25]).
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We have

v2(z(α, t), t) = BR(z,$)(α, t) +
1
2

$(α, t)
|∂αz(α, t)|2 ∂αz(α, t),

v1(z(α, t), t) = BR(z,$)(α, t)− 1
2

$(α, t)
|∂αz(α, t)|2 ∂αz(α, t),

(5)

where vj(z(α, t), t) denotes the limit velocity field obtained approaching the boundary in the
normal direction inside Ωj and BR(z, $)(α, t) is given by (4). It gives us the velocity field at
the interface to which we can subtract any term in the tangential direction without modifying
the geometric evolution of the curve

zt(α, t) = BR(z,$)(α, t) + c(α, t)∂αz(α, t). (6)

A wise choice of c(α, t) namely:

c(α, t) =
α + π

2π

∫

T

∂αz(α, t)
|∂αz(α, t)|2 · ∂αBR(z, $)(α, t)dα

−
∫ α

−π

∂αz(β, t)
|∂αz(β, t)|2 · ∂βBR(z,$)(β, t)dβ,

(7)

allows us to accomplish the fact that the length of the tangent vector to z(α, t) be just a
function in the variable t only:

A(t) = |∂αz(α, t)|2.
Next, in order to close the system we apply Darcy’s law or Bernoulli law which leads to

an equation that relates the parametrization z(α, t) with the amplitude $(α, t).

2.1 Darcy’s law

Darcy’s law is the following momentum equation for the velocity v

µ

κ
v = −∇p− (0, g ρ), (8)

where p is the pressure, µ is the dynamic viscosity, κ is the permeability of the medium, ρ is
the liquid density and g is the acceleration due to gravity. Together with the incompressibility
condition ∇ · v = 0 implies the identity

p2(z(α, t), t) = p1(z(α, t), t).

Let us introduce the following notation:

[µv](α, t) = (µ2v2(z(α, t), t)− µ1v1(z(α, t), t)) · ∂αz(α, t).

Then taking the limit in Darcy’s law we obtain

[µv](α, t)
κ

= −(∇p2(z(α, t), t)−∇p1(z1(α, t), t)) · ∂αz(α, t)− g(ρ2 − ρ1) ∂αz2(α, t)

= −∂α(p2(z(α, t), t)− p1(z(α, t), t))− g(ρ2 − ρ1) ∂αz2(α, t)

= −g(ρ2 − ρ1) ∂αz2(α, t),
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which gives us

µ2 + µ1

2κ
$(α, t) +

µ2 − µ1

κ
BR(z,$)(α, t) · ∂αz(α, t) = −g(ρ2 − ρ1)∂αz2(α, t),

so that

$(α, t) = −Aµ2BR(z,$)(α, t) · ∂αz(α, t)− 2κg
ρ2 − ρ1

µ2 + µ1
∂αz2(α, t). (9)

where Aµ = µ2−µ1

µ2+µ1
.

2.2 Bernoulli law

Next we give the evolution equation for the amplitude of vorticity $(α, t) by means of
Bernoulli’s law. We consider an irrotational flow satisfying Euler equations

ρ(vt + v∇v) = −∇p− (0, g ρ), (10)

and the incompressibility condition ∇ · v = 0. Denote φ such that v(x, t) = ∇φ(x, t), then
we have the expression

ρ(φt(x, t) +
1
2
|v(x, t)|2 + gx2) + p(x, t) = 0.

From Biot-Savart law, for x 6= z(α, t), we get

φ(x, t) =
1
2π

PV

∫
arctan

(x2 − z2(β, t)
x1 − z1(β, t)

)
$(β, t)dβ.

Let us define
Π(α, t) = φ2(z(α, t), t)− φ1(z(α, t), t),

where again φj(z(α, t), t) denotes the limit obtained approaching the boundary in the normal
direction inside Ωj . It is clear that

∂αΠ(α, t) = (∇φ2(z(α, t), t)−∇φ1(z(α, t), t)) · ∂αz(α, t)

= (v2(z(α, t), t)− v1(z(α, t), t)) · ∂αz(α, t)
= $(α, t),

therefore ∫

T
$(α, t)dα = 0.

Now we observe that

φ2(z(α, t), t) = IT (z, $)(α, t) +
1
2
Π(α, t),

φ1(z(α, t), t) = IT (z, $)(α, t)− 1
2
Π(α, t).

(11)
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where
IT (z,$)(α, t) =

1
2π

PV

∫
arctan

(z2(α, t)− z2(β, t)
z1(α, t)− z1(β, t)

)
$(β, t)dβ.

Then using Bernoulli law inside each domain and taking limits approaching the common
boundary, one finds

ρj(φj
t (z(α, t), t) +

1
2
|vj(z(α, t), t)|2 + gz2(α, t)) + pj(z(α, t), t) = 0,

and since
p1(z(α, t), t) = p2(z(α, t), t),

we get

[ρφt](α, t) +
ρ2

2
|v2(z(α, t), t)|2 − ρ1

2
|v1(z(α, t), t)|2 + (ρ2 − ρ1)gz2(α, t) = 0 (12)

where we have introduced the following notation:

[ρφt](α, t) = ρ2φ2
t (z(α, t), t)− ρ1φ1

t (z(α, t), t).

Then it is clear that φj
t (z(α, t), t) = ∂t(φj(z(α, t), t))− zt(α, t) ·∇φj(z(α, t), t), and using (11)

we find

[ρφt](α, t) =
ρ2 + ρ1

2
Πt(α, t) + (ρ2 − ρ1)∂t(IT (z, $)(α, t))

− zt(α, t) · (ρ2v2(z(α, t), t)− ρ1v1(z(α, t), t)).

The equations (5) and (6) in (12) give

Πt(α, t) = −2Aρ∂t(IT (z,$)(α, t)) + c(α, t)$(α, t) + Aρ|BR(z, $)(α, t)|2

+ 2Aρc(α, t)BR(z, $)(α, t) · ∂αz(α, t)−Aρ
|$(α, t)|2

4|∂αz(α, t)|2 − 2Aρgz2(α, t).
(13)

where Aρ = ρ2−ρ1

ρ2+ρ1
.

Easily we find the identity:

∂α∂t(IT (z,$)(α, t)) = ∂t(BR(z, $)(α, t) · ∂αz(α, t))
= ∂t(BR(z, $)(α, t)) · ∂αz(α, t) + BR(z, $)(α, t) · ∂αBR(z, $)(α, t)

+ c(α, t)BR(z, $)(α, t) · ∂2
αz(α, t) + ∂αc(α, t)BR(z,$)(α, t) · ∂αz(α, t)

Then taking a derivative in (13) and using the identity above we get the desired formula for
$, which in the case Aρ = 1, i.e. ρ1 = 0, reads as follows

$t(α, t) = −2∂tBR(z,$)(α, t) · ∂αz(α, t)− ∂α(
|$|2

4|∂αz|2 )(α, t) + ∂α(c$)(α, t)

+ 2c(α, t)∂αBR(z, $)(α, t) · ∂αz(α, t) + 2g∂αz2(α, t).
(14)

That is the standard water waves model where g is the acceleration due to gravity.
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3 Rayleigh-Taylor condition

Our next step is to find the formula for the difference of the gradients of the pressure in the
normal direction:

σ(α, t) = −(∇p2(z(α, t), t)−∇p1(z(α, t), t)) · ∂⊥α z(α, t).

3.1 Darcy’s law

Approaching the boundary in Darcy’s law, we get

σ(α, t) =
µ2 − µ1

κ
BR(z, $)(α, t) · ∂⊥α z(α, t) + g(ρ2 − ρ1)∂αz1(α, t).

3.2 Bernoulli law

We will consider the case Aρ = 1. This gives in the Euler equation −∇p(x, t) = 0 inside
Ω1(t) and therefore ∇p1(z(α, t), t) = 0. Next we define the Lagrangian coordinates for the
free boundary with the velocity v2

Zt(γ, t) = v2(Z(γ, t), t))
Z(γ, 0) = z0(γ).

We have the same curve with different parameterizations Z(γ, t) = z(α(γ, t), t) and two
equations for the velocity of the curve, namely

Zt(γ, t) = zt(α, t) + αt(γ, t)∂αz(α, t)
= BR(z, $)(α, t) + c(α, t)∂αz(α, t) + αt(γ, t)∂αz(α, t)

(15)

and another given by

Zt(γ, t) = BR(z, $)(α, t) +
1
2

$(α, t)
|∂αz(α, t)|2 ∂αz(α, t). (16)

Define the function ϕ(α, t) (see [4] and [2]) by

ϕ(α, t) =
1
2

$(α, t)
|∂αz(α, t)| − c(α, t)|∂αz(α, t)|. (17)

The dot product of equations (16) and (15) with the tangential vector gives

αt(γ, t) =
ϕ(α, t)

|∂αz(α, t)| . (18)

Taking a time derivative in (16) yields

Ztt(γ, t) · ∂⊥α z(α, t) = (∂tBR(z,$)(α, t) + αt(γ, t)∂αBR(z, $)(α, t)) · ∂⊥α z(α, t)

+
1
2

$(α, t)
|∂αz(α, t)|2 (∂αzt(α, t) + αt(γ, t)∂2

αz(α, t)) · ∂⊥α z(α, t)
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and therefore

σ(α, t) = (∂tBR(z,$)(α, t) +
ϕ(α, t)

|∂αz(α, t)|∂αBR(z,$)(α, t)) · ∂⊥α z(α, t)

+
1
2

$(α, t)
|∂αz(α, t)|2 (∂αzt(α, t) +

ϕ(α, t)
|∂αz(α, t)|∂

2
αz(α, t)) · ∂⊥α z(α, t) + g∂αz1(α, t).

(19)

4 Local existence

Our main results consist on the existence of a positive time T (depending upon the initial
conditions) for which we have a solution of the periodic Muskat problem (equations (6),
(7) and (9)) and of the free boundary of the irrotational incompressible Euler equations in
vacuum (equations (6), (7) and (14)) during the time interval [0, T ] so long as the initial data
belong to Hk(T) for k sufficiently large, F(z0)(α, β) < ∞, and

σ0(α) = −(∇p2(z0(α))−∇p1(z0(α))) · ∂⊥α z0(α) > 0,

where pj denote the pressure in Ωj and the function F(z), which measures the arc-chord
condition (see [16]), is defined by

F(z)(α, β, t) =
|β|

|z(α, t)− z(α− β, t)| ∀α, β ∈ (−π, π), (20)

with
F(z)(α, 0, t) =

1
|∂αz(α, t)| .

Theorem 4.1 Let z0(α) ∈ Hk(T) for k ≥ 3, F(z0)(α, β) < ∞, and

σ0(α) = −(∇p2(z0(α))−∇p1(z0(α))) · ∂⊥α z0(α) > 0.

Then there exists a time T > 0 so that there is a solution to (6), (7) and (9) in C1([0, T ]; Hk(T))
with z(α, 0) = z0(α).

Theorem 4.2 Let z0(α) ∈ Hk(T), ϕ(α, 0) = ϕ0(α) ∈ Hk− 1
2 defined in (17) for k ≥ 4,

F(z0)(α, β) < ∞, g ≥ 0, and

σ0(α) = −(∇p2(z0(α))−∇p1(z0(α))) · ∂⊥α z0(α) > 0.

Then there exists a time T > 0 so that there is a solution to (6), (7) and (14) with z(α, t) ∈
C1([0, T ]; Hk(T)), $(α, t) ∈ C1([0, T ];Hk−1(T)) for z(α, 0) = z0(α) and $(α, 0) = $0(α).

Remark 4.3 Notice that the parametrization is defined with properties (2) or (3). But in
the Hele-Shaw and Muskat problems we can show easily that

∫ π

−π
σ(α, t)dα = 0

for a closed curve, making impossible the task of prescribing a sign to the Rayleigh-Taylor
condition.
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5 Sketch of the proof

First we consider the operator T (u)(α) = 2BR(z, u)(α) · ∂αz(α) associated to a smooth H3

curve z satisfying the arch-chord condition. T is a smoothing compact operator in Sobolev
space whose adjoint T ∗, acting on u, can be described in term of the Cauchy integral of u
along the curve z and it is shown that their eigenvalues have absolute value strictly less than
one (see [3]).

In our proof it is crucial to get control of the norm of the inverse operators (I − ξT )−1,
|ξ| ≤ 1. The arguments rely upon the boundedness properties of the Hilbert transforms
associated to C1,α curves, for which we need precise estimates obtained with arguments
involving conformal mappings, Hopf maximum principle and Harnack inequalities (see [6]
and [13]).

We then provide upper bounds for the amplitude of the vorticity, the Birkhoff-Rott in-
tegral, the parametrization of the curve, the arc-chord condition and the Rayleigh-Taylor
condition, namely:

5.1 A priori estimates for theorem 4.1

‖$‖Hk ≤ expC(‖F(z)‖2
L∞ + ‖z‖2

Hk+1),

‖BR(z,$)‖Hk ≤ exp(C(‖F(z)‖2
L∞ + ‖z‖2

Hk+1),

d

dt
‖z‖2

Hk(t) ≤ − κ

2π(µ1+µ2)

∫

T

σ(α, t)
|∂αz(α)|2 ∂k

αz(α, t) · Λ(∂k
αz)(α, t)dα

+ expC(‖F(z)‖2
L∞(t) + ‖z‖2

Hk),

and
d

dt
‖F(z)‖2

L∞(t) ≤ expC(‖F(z)‖2
L∞(t) + ‖z‖2

H3(t))

where the operator Λ is defined by the Fourier transform Λ̂f(ξ) = |ξ|f̂(ξ) and σ(α, t) is the
difference of the gradients of the pressure in the normal direction. Finally we study the
evolution of m(t) = min

α∈T
σ(α, t) (see [8]), which satisfies the following lower bound

m(t) ≥ m(0)−
∫ t

0
expC(‖F(z)‖2

L∞(s) + ‖z‖2
H3(s))ds.

5.2 A priori estimates for theorem 4.2

‖BR(z, $)‖Hk ≤ C(‖F(z)‖2
L∞ + ‖z‖2

Hk+1 + ‖$‖2
Hk)m,

‖zt‖Hk ≤ C(‖F(z)‖2
L∞ + ‖z‖2

Hk+1 + ‖$‖2
Hk)m,
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‖$t‖Hk ≤ C
(
expC(‖F(z)‖2

L∞ + ‖z‖2
H3)

)
(‖F(z)‖2

L∞ + ‖z‖2
Hk+2 + ‖$‖2

Hk+1 + ‖ϕ‖2
Hk+1)m,

‖$‖Hk ≤ C(‖F(z)‖2
L∞ + ‖z‖2

Hk+1 + ‖$‖2
Hk−1 + ‖ϕ‖2

Hk)m.

We define

E(t) = ‖z‖2
Hk−1(t) +

∫

T

2σ(α, t)
|∂αz(α, t)|2 |∂

k
αz(α, t)|2dα + ‖F(z)‖2

L∞(t) + ‖$‖2
Hk−2(t) + ‖ϕ‖2

Hk− 1
2
(t)

and as before we take m(t) = min
α∈T

σ(α, t). Therefore using that

‖∂4
αz‖2

L2(t) =
∫

T

σ(α, t)
σ(α, t)

|∂4
αz(α, t)|2dα ≤ 1

m(t)

∫

T
σ(α, t)|∂4

αz(α, t)|2dα,

we obtain
d

dt
E(t) ≤ 1

mp(t)
C exp(CE(t)),

with p ∈ N. It yields

E(t) ≤ − 1
C

ln
(
exp(−CE(0))− C2

∫ t

0

1
mp(s)

ds
)
. (21)

The same argument (see [8]) allows us to accomplish the fact that m′(t) = σt(αt, t) for almost
all t, and formula (19) gives

‖σt(αt, t)‖L∞ ≤ 1
mp(t)

C exp(CE(t)),

and one can find

m(t) ≥ m(0) +
1
C

ln
(
1− C2

exp(−CE(0))

∫ t

0

1
mp(s)

ds
)
.

5.3 Existence

To conclude the existence proof we introduce regularized evolution equations satisfying uni-
formly the a priori estimates above (allowing us to take limits) and for which the local exis-
tence follows by standard arguments. Furthermore, in the case of the Hele-Shaw and Muskat
problem, in order to take advantage of the positivity of σ we use the pointwise inequality
satisfied by the non-local operator Λ (see [8]).
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